If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+14t-20=0
a = 2; b = 14; c = -20;
Δ = b2-4ac
Δ = 142-4·2·(-20)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{89}}{2*2}=\frac{-14-2\sqrt{89}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{89}}{2*2}=\frac{-14+2\sqrt{89}}{4} $
| -9+6p=27 | | 9x-21=-20x-87 | | 14,00+160p=24,000-200p | | 14,000+160p=24,000+200p | | 14/6m=7 | | 3(x+6)= 48 | | 9r-17+3r=13 | | -19=-37+8x | | 3c+2= −10 | | 3c+2=3c+2= −10 | | 3c+2=3c+2= −10− | | 2(g-3)-4=2(g-3) | | 34-3m=5m | | y²-y-2/5,y*10y/y+1= | | 2(9+3x)=14+2 | | -2(x+5)=5(x+1.2)+x | | 1/4(2x)=1/8(4x) | | 2(4x-40=10+8x+8 | | -10x+2(5x-9)=-18 | | 4+0.65x=10+0.45x | | –9y+1=9−10y | | -5+8i=0 | | x-0.7*x=30 | | 1=0.05x^2 | | 2x2−12x+58=0 | | -5(9+6y=-2(15y-9) | | 1/2(x)(x+2)+(2x)(2x)+(2x+2)(x+2)=136 | | |2n+5|=3 | | 3(1.5x+2)=2-2(4-x) | | x²=-x+2 | | 1/3x4=x² | | 30x=6x+4 |